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CHAPTER

ONE

GETTING STARTED

This page documents how to install the Panel Segmentation package and run automated metadata extraction for a PV
array at a specified location. These instructions assume that you already have Anaconda and git installed.

1.1 Installing

First, clone the Panel-Segmentation repository to your computer with git. This will bring the source code of the
package locally to your computer.

First, create a new conda environment and activate it (optional):

conda create -n panel-segmentation-dev python=3.7
conda activate panel-segmentation-dev

Now you should change the working directory to the Panel-Segmentation repository folder and install the package:

pip install .

If you want to use the precise package versions used in the example notebooks, you can use the requirements.
txt file:

pip install -r requirements.txt

Now you should be able to import panel_segmentation in a python terminal

import panel_segmentation

The recommended way of running the code is through a normal python terminal so that the conda environment is kept
clean, but if you want, you can install spyder in the environment too. Note that you’ll have to start spyder in a terminal
with the conda environment activated for it to have access to the packages we just installed.

1.2 Running a single system

A satellite image analysis is performed using the panel_detection.PanelDetection class. This class allows
the user to generate a satellite image based on a set of latitude-longitude coordinates, run the satellite image through a
image segmentation model to determine presence of a solar on a pixel-by-pixel basis, cluster individual solar arrays in
an image, and estimate the azimuth of each detected solar array.

1
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from panel_segmentation.panel_detection import PanelDetection
from panel_segmentation import panel_detection as pseg
import numpy as np
from tensorflow.keras.preprocessing import image as imagex
import matplotlib.pyplot as plt

#Example latitude-longitude coordinates to run the analysis on.
latitude = 39.7407
longitude = -105.1694
google_maps_api_key = "YOUR API KEY HERE"
file_name_save = "sat_img.png"

#CREATE AN INSTANCE OF THE PANELDETECTION CLASS TO RUN THE ANALYSIS
panelseg = pseg.PanelDetection(model_file_path ='./panel_segmentation/VGG16Net_
→˓ConvTranpose_complete.h5',

classifier_file_path ='./panel_segmentation/VGG16_
→˓classification_model.h5')

#GENERATE A SATELLITE IMAGE USING THE ASSOCIATED LAT-LONG COORDS AND THE GOOGLE
#MAPS API KEY
img = panelseg.generateSatelliteImage(latitude, longitude,

file_name_save,
google_maps_api_key)

#Show the generated satellite image
plt.imshow(img)

#LOAD THE IMAGE AND DECLARE AS A NUMPY ARRAY
x = imagex.load_img(file_name_save,

color_mode='rgb',
target_size=(640,640))

x = np.array(x)

#USE CLASSIFIER MODEL TO DETERMINE IF A SOLAR ARRAY HAS BEEN DETECTED IN THE
#IMAGE
panel_loc = panelseg.hasPanels(x)

#Mask the satellite image
res = panelseg.testSingle(x.astype(float), test_mask=None, model =None)
#Use the mask to isolate the panels
new_res = panelseg.cropPanels(x, res)
plt.imshow(new_res.reshape(640,640,3))

#check azimuth
az = panelseg.detectAzimuth(new_res)

#plot edges + azimuth
panelseg.plotEdgeAz(new_res,10, 1,

save_img_file_path = './')

#PERFORM AZIMUTH ESTIMATION FOR MULTIPLE CLUSTERS
#Cluster panels in an image. The image to be passed are the "isolated panels",
#mask and number of clusters

number_arrays = 5
clusters = panelseg.clusterPanels(new_res, res,

number_arrays)

(continues on next page)
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(continued from previous page)

for ii in np.arange(clusters.shape[0]):
az = panelseg.detectAzimuth(clusters[ii][np.newaxis,:])
print(az)

#Then we can find azimuth for each cluster
panelseg.plotEdgeAz(clusters, 10, 1,

save_img_file_path = './')
# Get the mounting configuration classification
panelseg.classifyMountingConfiguration(image_file_path = file_name_save)

# Run the site analysis pipeline on the image
panelseg.runSiteAnalysisPipeline("./panel_segmentation/examples/Panel_Detection_
→˓Examples/sat_img.png")

1.2. Running a single system 3
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CHAPTER

TWO

API REFERENCE

2.1 Classes

These classes perform analyses used in the Panel-Segmentation project.

panel_detection.PanelDetection([. . . ]) A class for training a deep learning architecture, de-
tecting solar arrays from a satellite image, performing
spectral clustering, predicting azimuth, and classifying
mounting type and configuration.

panel_detection.PanelDetection.
generateSatelliteImage(. . . )

Generates satellite image via Google Maps, using a set
of lat-long coordinates.

panel_detection.PanelDetection.
classifyMountingConfiguration(. . . )

This function is used to detect and classify the mounting
configuration of solar installations in satellite imagery.

panel_detection.PanelDetection.
diceCoeff(. . . )

This function is used as the metric of similarity between
the predicted mask and ground truth.

panel_detection.PanelDetection.
diceCoeffLoss(. . . )

This function is a loss function that can be used when
training the segmentation model.

panel_detection.PanelDetection.
testBatch(. . . )

This function is used to predict the mask of a batch of
test satellite images.

panel_detection.PanelDetection.
testSingle(. . . )

This function is used to predict the mask corresponding
to a single test image.

panel_detection.PanelDetection.
hasPanels(. . . )

This function is used to predict if there is a panel in an
image or not.

panel_detection.PanelDetection.
detectAzimuth(in_img)

This function uses canny edge detection to first extract
the edges of the input image.

panel_detection.PanelDetection.
cropPanels(. . . )

This function basically isolates regions with solar panels
in a satellite image using the predicted mask.

panel_detection.PanelDetection.
plotEdgeAz(. . . )

This function is used to generate plots of the image with
its azimuth It can generate three figures or one.

panel_detection.PanelDetection.
clusterPanels(. . . )

This function uses connected component algorithm to
cluster the panels

continues on next page
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Table 1 – continued from previous page
panel_detection.PanelDetection.
runSiteAnalysisPipeline(. . . )

This function runs a site analysis on a site, when lat-
itude and longitude coordinates are given. It includes
the following steps: 1. If generate_image = True, tak-
ing a satellite image in Google Maps of site location,
based on its latitude-longitude coordinates. The satel-
lite image is then saved under ‘file_name_save_img’
path. 2. Running the satellite image through the mount-
ing configuration/type pipeline. The associated mount
predictions are returned, and the most frequently oc-
curring mounting configuration of the predictions is se-
lected. The associated labeled image is stored under the
‘file_name_save_mount’ path. 3. Running the satel-
lite image through the azimuth estimation algorithm. A
default single azimuth is calculated in this pipeline for
simplicity. The detected azimuth image is saved via the
file_path_save_azimuth path. 4. If a mounting config-
uration is detected as a single-axis tracker, an azimuth
correction of 90 degrees is applied, as azimuth runs par-
allel to the installation, as opposed to perpendicular.
5. A final dictionary of analysed site metadata is re-
turned, including latitude, longitude, detected azimuth,
and mounting configuration.

panel_train.TrainPanelSegmentationModel(. . . )A class for training a deep learning architecture to per-
form image segmentation on satellite images to detect
solar arrays in the image.

panel_train.TrainPanelSegmentationModel.
loadImagesToNumpyArray(. . . )

Load in a set of images from a folder into a 4D numpy
array, with dimensions (number images, 640, 640, 3).

panel_train.TrainPanelSegmentationModel.
diceCoeff(. . . )

Accuracy metric is overly optimistic.

panel_train.TrainPanelSegmentationModel.
diceCoeffLoss(. . . )

This function is a loss function that can be used when
training the segmentation model.

panel_train.TrainPanelSegmentationModel.
trainSegmentation(. . . )

This function uses VGG16 as the base network and as
a transfer learning framework to train a model that seg-
ments solar panels from a satellite image.

panel_train.TrainPanelSegmentationModel.
trainPanelClassifier(. . . )

This function uses VGG16 as the base network and as
a transfer learning framework to train a model that pre-
dicts the presence of solar panels in a satellite image.

panel_train.TrainPanelSegmentationModel.
trainMountingConfigClassifier(. . . )

This function uses Faster R-CNN ResNet50 FPN as
the base network and as a transfer learning framework
to train a model that performs object detection on the
mounting configuration of solar arrays.

panel_train.TrainPanelSegmentationModel.
trainingStatistics(. . . )

This function prints the training statistics such as train-
ing loss and accuracy and validation loss and accuarcy.

6 Chapter 2. API reference
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2.1.1 panel_segmentation.panel_detection.PanelDetection

class panel_segmentation.panel_detection.PanelDetection(model_file_path='./VGG16Net_ConvTranpose_complete.h5',
classi-
fier_file_path='./VGG16_classification_model.h5',
mount-
ing_classifier_file_path='./object_detection_model.pth')

A class for training a deep learning architecture, detecting solar arrays from a satellite image, performing spectral
clustering, predicting azimuth, and classifying mounting type and configuration.

__init__(model_file_path='./VGG16Net_ConvTranpose_complete.h5', clas-
sifier_file_path='./VGG16_classification_model.h5', mount-
ing_classifier_file_path='./object_detection_model.pth')

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([model_file_path, . . . ]) Initialize self.
classifyMountingConfiguration(image_file_path)This function is used to detect and classify the

mounting configuration of solar installations in satel-
lite imagery.

clusterPanels(test_mask[, fig]) This function uses connected component algorithm
to cluster the panels

cropPanels(test_data, test_res) This function basically isolates regions with solar
panels in a satellite image using the predicted mask.

detectAzimuth(in_img[, number_lines]) This function uses canny edge detection to first ex-
tract the edges of the input image.

diceCoeff(y_true, y_pred[, smooth]) This function is used as the metric of similarity be-
tween the predicted mask and ground truth.

diceCoeffLoss(y_true, y_pred) This function is a loss function that can be used when
training the segmentation model.

generateSatelliteImage(latitude, longi-
tude, . . . )

Generates satellite image via Google Maps, using a
set of lat-long coordinates.

hasPanels(test_data) This function is used to predict if there is a panel in
an image or not.

plotEdgeAz(test_results[, no_lines, . . . ]) This function is used to generate plots of the image
with its azimuth It can generate three figures or one.

continues on next page

2.1. Classes 7
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Table 2 – continued from previous page
runSiteAnalysisPipeline(file_name_save_img)This function runs a site analysis on a site, when

latitude and longitude coordinates are given. It in-
cludes the following steps: 1. If generate_image
= True, taking a satellite image in Google Maps
of site location, based on its latitude-longitude co-
ordinates. The satellite image is then saved under
‘file_name_save_img’ path. 2. Running the satel-
lite image through the mounting configuration/type
pipeline. The associated mount predictions are re-
turned, and the most frequently occurring mount-
ing configuration of the predictions is selected.
The associated labeled image is stored under the
‘file_name_save_mount’ path. 3. Running the satel-
lite image through the azimuth estimation algorithm.
A default single azimuth is calculated in this pipeline
for simplicity. The detected azimuth image is saved
via the file_path_save_azimuth path. 4. If a mount-
ing configuration is detected as a single-axis tracker,
an azimuth correction of 90 degrees is applied, as az-
imuth runs parallel to the installation, as opposed to
perpendicular. 5. A final dictionary of analysed site
metadata is returned, including latitude, longitude,
detected azimuth, and mounting configuration.

testBatch(test_data[, test_mask, . . . ]) This function is used to predict the mask of a batch
of test satellite images.

testSingle(test_data[, test_mask, model]) This function is used to predict the mask correspond-
ing to a single test image.

2.1.2 panel_segmentation.panel_detection.PanelDetection.generateSatelliteImage

PanelDetection.generateSatelliteImage(latitude, longitude, file_name_save,
google_maps_api_key)

Generates satellite image via Google Maps, using a set of lat-long coordinates.

Parameters

• latitude (float) – Latitude coordinate of the site.

• longitude (float) – Longitude coordinate of the site.

• file_name_save (string) – File path that we want to save the image to, where the image
is saved as a PNG file.

• google_maps_api_key (string) – Google Maps API Key for automatically pulling satel-
lite images.

Returns

• Figure

• Figure of the satellite image

8 Chapter 2. API reference
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2.1.3 panel_segmentation.panel_detection.PanelDetection.classifyMountingConfiguration

PanelDetection.classifyMountingConfiguration(image_file_path, acc_cutoff=0.65,
file_name_save=None, use_nms=True)

This function is used to detect and classify the mounting configuration of solar installations in satellite im-
agery. It leverages the Detecto package’s functionality (https://detecto.readthedocs.io/en/latest/api/index.html),
to perform object detection on a satellite image.

Parameters

• image_file_path (string) – File path of the image. PNG file.

• acc_cutoff (float) – Default set to 0.65. Confidence cutoff for whether or not to count a
object detection classification as real. All returned classications greater than or equal to the
accuracy cutoff are counted, and all classifications less than the accuracy cutoff are thrown
out.

Returns tuple Tuple consisting of (scores, labels, boxes), where ‘scores’ is the list of object detection
confidence scores, ‘labels’ is a list of all corresponding labels, and ‘boxes’ is a tensor object
containing the associated boxes for the associated labels and confidence scores.

Return type Returns

2.1.4 panel_segmentation.panel_detection.PanelDetection.diceCoeff

PanelDetection.diceCoeff(y_true, y_pred, smooth=1)
This function is used as the metric of similarity between the predicted mask and ground truth.

Parameters

• y_true (numpy array of floats) – The true mask of the image

• y_pred (numpy array of floats) – the predicted mask of the data

• smooth (int) – A parameter to ensure we are not dividing by zero and also a smoothing
parameter for back -ropagation. If the prediction is hard threshold to 0 and 1, it is difficult
to back-propagate the dice loss gradient. We add this parameter to actually smooth out the
loss function, making it differentiable.

Returns dice – Retuns the metric of similarity between prediction and ground truth

Return type float

2.1.5 panel_segmentation.panel_detection.PanelDetection.diceCoeffLoss

PanelDetection.diceCoeffLoss(y_true, y_pred)
This function is a loss function that can be used when training the segmentation model. This loss function can
be used in place of binary crossentropy, which is the current loss function in the training stage.

Parameters

• y_true (numpy array of floats) – The true mask of the image

• y_pred (numpy array of floats) – The predicted mask of the data

Returns

• float

• The loss metric between prediction and ground truth

2.1. Classes 9
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2.1.6 panel_segmentation.panel_detection.PanelDetection.testBatch

PanelDetection.testBatch(test_data, test_mask=None, batch_size=16, model=None)
This function is used to predict the mask of a batch of test satellite images. Use this to test a batch of images
greater than 4.

Parameters

• test_data (nparray float) – The satellite images

• test_mask (nparray int or float) – The mask ground truth corresponding to the
test_data

• batch_size (int) – The batch size of the test_data.

• model (tf.keras.model.object) – A custom model can be provided as input or we
can use the initialized model

Returns

• test_res (nparray float) – The predicted masks

• accuracy (float) – The accuarcy of prediction as compared with the ground truth if pro-
vided

2.1.7 panel_segmentation.panel_detection.PanelDetection.testSingle

PanelDetection.testSingle(test_data, test_mask=None, model=None)
This function is used to predict the mask corresponding to a single test image. It takes as input the test_data (a
required parameter) and two non-required parameters- test_mask and model. Use this to test a single image.

Parameters

• test_data (nparray int or float) – The satellite image. dimension is (640,640,3) or
(a,640,640,3)

• test_mask (nparray int or float) – The ground truth of what the mask should be.

• model (tf.keras model object) – A custom model can be provided as input or we
can use the initialized model

Returns

• test_res (nparray float) – The predicted mask of the single image. The dimension is
(640,640 or (a,640,640))

• accuracy (float) – The accuracy of prediction as compared with the ground truth if pro-
vided

2.1.8 panel_segmentation.panel_detection.PanelDetection.hasPanels

PanelDetection.hasPanels(test_data)
This function is used to predict if there is a panel in an image or not. Note that it uses a saved classifier model
we have trained and not the segmentation model.

Parameters test_data (nparray float or int) – The satellite image. The shape should be
[a,640,640,3] where ‘a’ is the number of data or (640,640,3) if it is a single image

Returns

• boolean

10 Chapter 2. API reference
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• True if solar array is detected in an image,

• and False otherwise.

2.1.9 panel_segmentation.panel_detection.PanelDetection.detectAzimuth

PanelDetection.detectAzimuth(in_img, number_lines=5)
This function uses canny edge detection to first extract the edges of the input image. To use this function, you
have to first predict the mask of the test image using testSingle function. Then use the cropPanels function to
extract the solar panels from the input image using the predicted mask. Hence the input image to this function
is the cropped image of solar panels.

After edge detection, Hough transform is used to detect the most dominant lines in the input image and subse-
quently use that to predict the azimuth of a single image.

Parameters

• in_img (nparray uint8) – The image containing the extracted solar panels with other
pixels zeroed off. Dimension is [1,640,640,3]

• number_lines (int) – This variable tells the function the number of dominant lines it
should examine. We currently inspect the top 5 lines.

Returns azimuth – The azimuth of the panel in the image.

Return type int

2.1.10 panel_segmentation.panel_detection.PanelDetection.cropPanels

PanelDetection.cropPanels(test_data, test_res)
This function basically isolates regions with solar panels in a satellite image using the predicted mask. It zeros
out other pixels that does not contain a panel. You can use this for a single test data or multiple test data.

Parameters

• test_data (nparray float) – This is the input test data. This can be a single image or
multiple image. Hence the dimension can be (640,640,3) or (a,640,640,3)

• test_res (nparray float) – This is the predicted mask of the test images passed as an
input and used to crop out the solar panels. Dimension is (640,640)

Returns new_test_res – This returns images here the solar panels have been cropped out and the
background zeroed. It has the same shape as test data. The dimension is [a,640,640,3] where a
is the number of input images.

Return type nparray uint8

2.1.11 panel_segmentation.panel_detection.PanelDetection.plotEdgeAz

PanelDetection.plotEdgeAz(test_results, no_lines=5, no_figs=1, save_img_file_path=None,
plot_show=False)

This function is used to generate plots of the image with its azimuth It can generate three figures or one. For
three figures, that include the input image, the hough transform space and the input images with detected lines.
For single image, it only outputs the input image with detected lines.

Parameters

2.1. Classes 11
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• test_results (nparray float64 or unit8) – 8-bit input image. This variable represents
the predicted images from the segmentation model. Hence the dimension must be [a,b,c,d]
where [a] is the number of images, [b,c] are the dimensions of the image - 640 x 640 in this
case and [d] is 3 - RGB

• no_lines (int) – default is 10. This variable tells the function the number of dominant lines
it should examine.

• no_figs (int) – 1 or 3. If the number of figs is 1, it outputs the mask with Hough lines and
the predicted azimuth. However, if the number of lines is 3, it gives three plots.

1. The input image,

2. Hough transform search space

3. Unput image with houghlines and the predicted azimuth

• save_img_file_path (string) – You can pass as input the location to save the plots

• plot_show (boolean) – If False, it will supress the plot as an output and just save the plots
in a folder

Returns

• Figure

• Plot of the masked image, with detected Hough Lines and azimuth

• estimate.

2.1.12 panel_segmentation.panel_detection.PanelDetection.clusterPanels

PanelDetection.clusterPanels(test_mask, fig=False)
This function uses connected component algorithm to cluster the panels

Parameters

• test_mask (boolean or float) – The predicted mask. Dimension is (640,640) or can be
converted to RGB (640,640,3)

• fig (boolean) – shows the clustering image if fig = True

Returns

• uint8

• Masked image containing detected clusters each of

• dimension (640,640,3)

• uint8

• The optimal number of clusters

12 Chapter 2. API reference
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2.1.13 panel_segmentation.panel_detection.PanelDetection.runSiteAnalysisPipeline

PanelDetection.runSiteAnalysisPipeline(file_name_save_img, latitude=None, longi-
tude=None, google_maps_api_key=None,
file_name_save_mount=None,
file_path_save_azimuth=None, gener-
ate_image=False)

This function runs a site analysis on a site, when latitude and longitude coordinates are given. It includes the
following steps:

1. If generate_image = True, taking a satellite image in Google Maps of site location, based on its
latitude-longitude coordinates. The satellite image is then saved under ‘file_name_save_img’ path.

2. Running the satellite image through the mounting configuration/type pipeline. The associated mount
predictions are returned, and the most frequently occurring mounting configuration of the predictions
is selected. The associated labeled image is stored under the ‘file_name_save_mount’ path.

3. Running the satellite image through the azimuth estimation algorithm. A default single azimuth
is calculated in this pipeline for simplicity. The detected azimuth image is saved via the
file_path_save_azimuth path.

4. If a mounting configuration is detected as a single-axis tracker, an azimuth correction of 90 degrees is
applied, as azimuth runs parallel to the installation, as opposed to perpendicular.

5. A final dictionary of analysed site metadata is returned, including latitude, longitude, detected az-
imuth, and mounting configuration.

Parameters

• file_name_save_img (string) – File path that we want to save the raw satellite image to.
PNG file.

• latitude (float) – Default None. Latitude coordinate of the site. Not required if we’re
using a pre-generated satellite image.

• longitude (float) – Default None. Longitude coordinate of the site. Not required if we’re
using a pre-generated satellite image.

• google_maps_api_key (string) – Default None. Google Maps API Key for automati-
cally pulling satellite images. Not required if we’re using a pre-generated satellite image.

• file_name_save_mount (string) – File path that we want to save the labeled mounting
configuration image to. PNG file.

• file_name_save_azimuth (string) – File path that we want to save the predicted azimuth
image to. PNG file.

• generate_image (bool) – Whether or not we should generate the image via the Google
Maps API. If set to True, satellite image is generated and saved. Otherwise, no image is
generated and the image saved under the file_name_save_img path is used.

Returns Dictionary containing the latitude, longitude, classified mounting configuration, and the
estimated azimuth of a site.

Return type Python dictionary

2.1. Classes 13
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2.1.14 panel_segmentation.panel_train.TrainPanelSegmentationModel

class panel_segmentation.panel_train.TrainPanelSegmentationModel(batch_size,
no_epochs,
learn-
ing_rate)

A class for training a deep learning architecture to perform image segmentation on satellite images to detect
solar arrays in the image.

__init__(batch_size, no_epochs, learning_rate)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(batch_size, no_epochs, learning_rate) Initialize self.
diceCoeff(y_true, y_pred[, smooth]) Accuracy metric is overly optimistic.
diceCoeffLoss(y_true, y_pred) This function is a loss function that can be used when

training the segmentation model.
loadImagesToNumpyArray(image_file_path) Load in a set of images from a folder into a 4D

numpy array, with dimensions (number images, 640,
640, 3).

trainMountingConfigClassifier(train_path,
. . . )

This function uses Faster R-CNN ResNet50 FPN as
the base network and as a transfer learning frame-
work to train a model that performs object detection
on the mounting configuration of solar arrays.

trainPanelClassifier(train_path, val_path[,
. . . ])

This function uses VGG16 as the base network and
as a transfer learning framework to train a model that
predicts the presence of solar panels in a satellite im-
age.

trainSegmentation(train_data, train_mask,
. . . )

This function uses VGG16 as the base network and
as a transfer learning framework to train a model that
segments solar panels from a satellite image.

trainingStatistics(results, mode) This function prints the training statistics such as
training loss and accuracy and validation loss and ac-
cuarcy.

2.1.15 panel_segmentation.panel_train.TrainPanelSegmentationModel.loadImagesToNumpyArray

TrainPanelSegmentationModel.loadImagesToNumpyArray(image_file_path)
Load in a set of images from a folder into a 4D numpy array, with dimensions (number images, 640, 640, 3).

Parameters image_file_path (string) – Path to folder where we want to process png images.

Returns

• nparray

• 4D numpy array with dimensions

• (number images in folder, 640, 640, 3).

14 Chapter 2. API reference
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2.1.16 panel_segmentation.panel_train.TrainPanelSegmentationModel.diceCoeff

TrainPanelSegmentationModel.diceCoeff(y_true, y_pred, smooth=1)
Accuracy metric is overly optimistic. IOU, dice coefficient are more suitable for semantic segmentation tasks.
This function is used as the metric of similarity between the predicted mask and ground truth.

Parameters

• y_true (nparray float) – the true mask of the image

• y_pred (nparray float) – the predicted mask of the data

• smooth (int) – a parameter to ensure we are not dividing by zero and also a smoothing
parameter. For back propagation. If the prediction is hard threshold to 0 and 1, it is difficult
to back propagate the dice loss gradient. We add this parameter to actually smooth out the
loss function, making it differentiable.

Returns dice – The metric of similarity between prediction and ground truth

Return type float

2.1.17 panel_segmentation.panel_train.TrainPanelSegmentationModel.diceCoeffLoss

TrainPanelSegmentationModel.diceCoeffLoss(y_true, y_pred)
This function is a loss function that can be used when training the segmentation model. This loss function can
be used in place of binary crossentropy, which is the current loss function in the training stage.

Parameters

• y_true (nparray float) – The true mask of the image

• y_pred (nparray float) – The predicted mask of the data

Returns

• float

• The loss metric between prediction and ground truth

2.1.18 panel_segmentation.panel_train.TrainPanelSegmentationModel.trainSegmentation

TrainPanelSegmentationModel.trainSegmentation(train_data, train_mask,
val_data, val_mask,
model_file_path='/home/docs/checkouts/readthedocs.org/user_builds/panel-
segmentation/envs/stable/lib/python3.7/site-
packages/panel_segmentation/VGG16Net_ConvTranpose_complete.h5')

This function uses VGG16 as the base network and as a transfer learning framework to train a model that
segments solar panels from a satellite image. It uses the training data and mask to learn how to predict the mask
of a solar array from a satellite image. It uses the validation data to prevent overfitting and to test the prediction
on the fly. The validation data is also use to validate when to save the best model during training.

Parameters

• train_data (nparray float) – This should be the training images.

• train_mask (nparray int/float) – This should be the training images mask - ground
truth

• val_data (nparray float) – This should be the validation images

• val_mask (nparray float) – This should be the validation images mask - ground truth
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Notes

Hence the dimension of the four variables must be [a,b,c,d] where [a] is the number of input images, [b,c] are
the dimensions of the image - 640 x 640 in this case and [d] is 3 - RGB

Returns

• results (tf.keras.fit_generator History object) – This varaiale contains
training history and statistics

• custom_model (tf.keras model object) – The final trianed model. Note that this
may not be the best model as the best model is saved during training

2.1.19 panel_segmentation.panel_train.TrainPanelSegmentationModel.trainPanelClassifier

TrainPanelSegmentationModel.trainPanelClassifier(train_path, val_path,
model_file_path='/home/docs/checkouts/readthedocs.org/user_builds/panel-
segmentation/envs/stable/lib/python3.7/site-
packages/panel_segmentation/VGG16_classification_model.h5')

This function uses VGG16 as the base network and as a transfer learning framework to train a model that predicts
the presence of solar panels in a satellite image. It uses the training data to learn how to predict the presence of
a solar array in a satellite image. It uses the validation data to prevent overfitting and to test the prediction on
the fly. The validation data is also use to validate when to save the best model during training.

Parameters

• train_path (string) – This is the path to the folder that contains the training images Note
that the directory must be structured in this format:

train_path/

. . . has panel/ . . . . . . a_image_1.jpg . . . . . . a_image_2.jpg

. . . no panels/ . . . . . . b_image_1.jpg . . . . . . b_image_2.jpg

• val_path (string) – This is the path to the folder that contains the validation images Note
that the directory must be structured in this format:

val_path/

. . . has panel/ . . . . . . a_image_1.jpg . . . . . . a_image_2.jpg

. . . no panels/ . . . . . . b_image_1.jpg . . . . . . b_image_2.jpg

Returns

• results (tf.keras.fit_generator History object) – This varaiale contains
training history and statistics

• final_clas_model (tf.keras model object) – The final trianed model. Note that
this may not be the best model as the best model is saved during training
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2.1.20 panel_segmentation.panel_train.TrainPanelSegmentationModel.trainMountingConfigClassifier

TrainPanelSegmentationModel.trainMountingConfigClassifier(train_path,
val_path, de-
vice=device(type='cuda'))

This function uses Faster R-CNN ResNet50 FPN as the base network and as a transfer learning framework to
train a model that performs object detection on the mounting configuration of solar arrays. It uses the training
data to locate and classify mounting configuration of the solar installation. It uses the validation data to prevent
overfitting and to test the prediction on the fly.

Parameters

• train_path (string) – This is the path to the folder that contains the training images
Note that the directory must be structured in this format:

train_path/

. . . images/ . . . . . . a_image_1.png . . . . . . a_image_2.png

. . . annotations/ . . . . . . b_image_1.xml . . . . . . b_image_2.xml

• val_path (string) – This is the path to the folder that contains the validation images
Note that the directory must be structured in this format:

val_path/

. . . images/ . . . . . . a_image_1.png . . . . . . a_image_2.png

. . . annotations/ . . . . . . b_image_1.xml . . . . . . b_image_2.xml

• device (string) – This argument is passed to the Model() class in Detecto. It determines
how to run the model: either on GPU via Cuda (default setting), or on CPU. Please note
that running the model on GPU results in significantly faster training times.

Returns model – The final trained mounting configuration object detection model.

Return type detecto.core.Model object

2.1.21 panel_segmentation.panel_train.TrainPanelSegmentationModel.trainingStatistics

TrainPanelSegmentationModel.trainingStatistics(results, mode)
This function prints the training statistics such as training loss and accuracy and validation loss and accuarcy.
The dice coefficient was only used for segmentation and not panel classification. We use mode to decide if we
should print out dice coefficient.

Parameters

• results (tf.keras.fit_generator History object) – This is the output of
the trained classifier. It contains training history.

• mode (int) – If mode = 1, it assumes we want plots for the semantic segmentation and
also plots the dice coefficient results. For any other value of mode, it does not show plots
of dice coefficients.

Returns

• figures

• Figures based on the model training statistics
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2.2 Models

The following deep learning models are included in the Panel-Segmentation package.
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CHAPTER

THREE

CHANGE LOG

3.1 Version 0.0.2 (May 12, 2022)

Added the mounting object detection algorithm to detect and classify the mounting configuration of solar installations
in satellite imagery. Updated several of the Github workflows to provide more rigorous testing protocols (require-
ments.txt check and flake8 check).

3.1.1 Documentation

• Updated Sphinx Documentation to account for new functions.

• Updated the Jupyter notebooks to reflect pipeline changes: adding in the mounting configuration detection
classifier and running it on satellite imagery.

3.1.2 Scripts

• Add the function panel_segmentation.panel_train.TrainPanelSegmentationModel.
trainMountingConfigClassifier().

• Add the functions panel_segmentation.panel_detection.PanelDetection.
runSiteAnalysisPipeline() and panel_segmentation.panel_detection.
classifyMountingConfiguration().

• Add unit testing for the panel_segmentation.panel_train.
TrainPanelSegmentationModel.trainMountingConfigClassifier(),
panel_segmentation.panel_detection.runSiteAnalysisPipeline(),
and panel_segmentation.panel_detection.PanelDetection.
classifyMountingConfiguration() functions.

3.1.3 Other Changes

• Add Github workflow checks to include requirements.txt checks and flake8 checks.
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3.2 Version 0.0.1 (October 27, 2020)

Created initial package Panel-Segmentation for public release.

3.2.1 Documentation

• Add Sphinx documentation.

• Add commenting for each of the functions in the package.

• Add example Jupyter notebooks for panel detection and training the classifier and segmentation models.

3.2.2 Scripts

• Add PanelDetection class, where the user can generate a satellite image and run it through the pre-generated
models.

• Add TrainPanelSegmentationModel() class, where the user can independently train segmentation and classifier
models.

• Add unit testing for the PanelDetection() and TrainPanelSegmentationModel() classes, stored in the /tests/
folder. The pytest package was used.

3.2.3 Other Changes

• Add versioneer and setup scripts to perform pip installs of the package.
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INDICES AND TABLES

• genindex

• modindex

• search
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